Search
Close this search box.
Search

Revolutionary transparent graphene neural sensors

Engineers at the University of Wisconsin–Madison, have researched how to make and use researched graphene based microelectrocorticography (uECoG) arrays. Applicable in neuroscience research, the researchers now look into possiblities to expand the use of the arrays in areas such as the research of stroke or epilepsy.
The research, published in an open-access paper earlier in October in the journal Nature Protocols, provides  details on ow to fabricate and use of neural microelectrocorticography (uECoG) arrays made with transparent graphene in applications in electrophysiology, fluorescent microscopy, optical coherence tomography, and optogenetics.

According to the researchers, graphene is one of the most promising candidates for transparent neural electrodes, because the material has a UV to IR transparency of more than 90 percent, in addition to its high electrical and thermal conductivity, flexibility, and biocompatibility. That allows for simultaneous high-resolution imaging and optogenetic control, writes  Kurzweil News.

Researchers at the University of Wisconsin-Milwaukee, Medtronic PLC Neuromodulation, the University of Washington, and Mahidol University in Bangkok, Thailand were also involved. The procedures in the paper describe a graphene uECoG electrode array implanted on the surface of the cerebral cortex. It can be completed within 3–4 weeks by an experienced graduate student. But this protocol “may be amenable to fabrication and testing of a multitude of other electrode arrays used in biological research, such as penetrating neural electrode arrays to study deep brain, nerve cuffs that are used to interface with the peripheral nervous system (PNS), or devices that interface with the muscular system,” the paper adds.

Breakthrough application

The breakthrough application of graphene based microelectrocorticography (uECoG) arrays was first announced in the open-access journal Nature Communications in 2014. Now, the UW–Madison researchers are looking at ways to improve and build upon the technology. They also are seeking to expand its applications from neuroscience into areas such as research of stroke, epilepsy, Parkinson’s disease, cardiac conditions, and many others. They further hope other researchers will do the same.

Funding for the initial research came from the Reliable Neural-Interface Technology program at the U.S.

Defense Advanced Research Projects Agency. The research was led by Zhenqiang (Jack) Ma, the Lynn H. Matthias Professor and Vilas Distinguished Achievement Professor in electrical and computer engineering at UW–Madison and Justin Williams, the Vilas Distinguished Achievement Professor in biomedical engineering and neurological surgery at UW–Madison.

Whixx

ICT&health World Conference 2024

Experience the future of healthcare at the ICT&health World Conference from May 14th to 16th, 2024!
Secure your ticket now and immerse yourself in groundbreaking technologies and innovative solutions.
Engage with fellow experts and explore the power of global collaborations.

Share this article!

Read also
Navigating Digital Maturity in Healthcare IT
Digital maturity vs. Reality. How to rethink the IT staff role in a hospital
Online health care icon application on smart phone
End-users of mobile health apps expect far more than a good design
Mayo Clinic started with its innovations for its ten million patients and demonstrated that its model worked, and that data could be ethically and responsibly used to drive innovations.
John Halamka: 'Create the Fear of Missing Out'
Balancing regulatory compliance with seamless adoption, healthcare navigates the integration of AI solutions.
A guide to implementing AI in healthcare amid the EU AI Act
AmyWebb-Stephen-Olker
Futurist Amy Webb claims that wearables will evolve into "connectables"
Digital health solutions empower patients to better manage their health and integrate care into their daily lives.
How to improve Digital Patient Engagement to streamline workflows
For people with diabetes, inaccurate blood glucose measurements can lead to errors in diabetes management, including taking the wrong dose of insulin, sulfonylureas, or other medications that can rapidly lower blood glucose.
Smartwatches measuring glucose level: Harmful but easy to buy fake innovations
How to introduce innovation and AI in healthcare organizations if there is no business model for prevention and quality – Our interview with Professor Ran Balicer, the Chief Innovation Officer at Clalit Health Services and founding Director of Clalit Research Institute.
I see no legitimate rationale for delaying the digital transformation in healthcare
Pioneering Cardiac Arrest Detection for Enhanced Survival.
CardioWatch Revolutionizes Cardiac Arrest Detection
Dr. Oscar DĂ­az-Cambronero, Head of Perioperative Medicine Department at La Fe Hospital, spearheads innovative telemonitoring initiatives revolutionizing patient care
Smartwatches Saving Lives Inside and Outside the Hospital
Follow us