Search
Close this search box.
Search

Using smartphone for DNA analysis can reduce impact of wrong treatment

A group of scientists in the US and Sweden have developed a DNA-analyzing kit that can run on a smartphone. It is another step towards using mobile technology in a broad and growing variety of ways for medical, health or research purposes. Thanks to miniaturization of computers and lab equipment, sophisticated labs might soon no longer be needed for DNA research.

To understand how it works, Quartz Media offers the example of tuberculosis treatment. When a patient in, say, rural India is diagnosed with the disease, a doctor without access to a sophisticated lab will typically give the patient drugs from the first line of treatment. However, one in four patients won’t respond to this treatment, because the bug they’ve caught is resistant to these drugs.

Without a test to determine which strain the patient is suffering from, the doctor has to wait for weeks till he or she finds out that the patient has the drug-resistant infection, and then prescribe a different medication. In that period, the patient would have already spread the infectious and hard-to-treat disease to many more people around him. A portable DNA analyzer could easily fix this problem. To create one such analyzer, Mats Nilsson of Stockholm University and his colleagues took a sample of human tissue and analyzed it with a specially designed attachment connected to a Nokia Lumia 1020 smartphone with a special 41 megapixel camera.

Tiny section genome analysed

DNA is made up of four bases: A, T, G, and C. A tuberculosis genome consists of typically 4.5 million base pairs. But Nilsson only needs to look at a tiny section of the whole genome. Inside the attachment, specialized chemicals are designed to seek that tiny sequence of DNA and snip it out. Since DNA is too small for any  smartphone cameras to capture, an enzyme is used to multiply the small snippet 1,000 times.

Next, a new set of chemicals, which become fluorescent when light is shone on them, attach themselves to it based on what the sequence is. Finally, the attachment shines two different colors of laser onto the mixture. With all those DNA snippets emitting light, a decent smartphone camera is now able to see DNA. If the tuberculosis strain is drug-resistant, the mixture shines in a different color than if the infection is not drug-resistant. All this can happen in the space of a few hours, rather than the days or weeks that would be needed to send the sample to a specialized lab for the same result. “I was so surprised,” says Nilsson, “the images from the smartphone and those from the lab were indistinguishable.”

Fraction of the cost

The study’s results were published in Nature Communications. Nilsson’s team is now looking to commercialize the technology. The researchers believe that the attachment could cost as little as $500, a fraction of the many thousands of dollars needed for lab equipment.

There are limitations, though. The lab has yet to develop a method that engineers the movement of various liquids that go in and out of the attachment. To show their system works, the researchers used lab equipment to do it. And at present, the system can only test for one type of disease at a time. So if you want to test for cancer after a tuberculosis test, you’d have to wash the equipment and use a whole different set of chemicals to perform the analysis.

Nilsson thinks it should be possible to adapt the attachment for different smartphones, even those with lower-resolution cameras. The Nokia Lumia 1020 has a special 41-megapixel camera, where typical smartphone cameras in the latest generation use 12 megapixels.

The project also faces competition. A UK-based company, Oxford Nanopore, has developed a technology that doesn’t rely on cameras to achieve a similar analysis. It is in the process of creating a smartphone adapter for it. The system promises to be even more portable, because it won’t require the use of specialized chemicals. Clive Brown, the company’s chief technology officer, told the BBC that it would “allow anybody to sequence anything, anywhere.”

The study’s results were published in Nature Communication.

Whixx

ICT&health World Conference 2024

Experience the future of healthcare at the ICT&health World Conference from May 14th to 16th, 2024!
Secure your ticket now and immerse yourself in groundbreaking technologies and innovative solutions.
Engage with fellow experts and explore the power of global collaborations.

Share this article!

Read also
Balancing regulatory compliance with seamless adoption, healthcare navigates the integration of AI solutions.
A guide to implementing AI in healthcare amid the EU AI Act
AmyWebb-Stephen-Olker
Futurist Amy Webb claims that wearables will evolve into "connectables"
Digital health solutions empower patients to better manage their health and integrate care into their daily lives.
How to improve Digital Patient Engagement to streamline workflows
For people with diabetes, inaccurate blood glucose measurements can lead to errors in diabetes management, including taking the wrong dose of insulin, sulfonylureas, or other medications that can rapidly lower blood glucose.
Smartwatches measuring glucose level: Harmful but easy to buy fake innovations
How to introduce innovation and AI in healthcare organizations if there is no business model for prevention and quality – Our interview with Professor Ran Balicer, the Chief Innovation Officer at Clalit Health Services and founding Director of Clalit Research Institute.
I see no legitimate rationale for delaying the digital transformation in healthcare
Pioneering Cardiac Arrest Detection for Enhanced Survival.
CardioWatch Revolutionizes Cardiac Arrest Detection
Dr. Oscar Díaz-Cambronero, Head of Perioperative Medicine Department at La Fe Hospital, spearheads innovative telemonitoring initiatives revolutionizing patient care
Smartwatches Saving Lives Inside and Outside the Hospital
EIT 2024
EIT Awards 2024. Two European startups are revolutionizing the treatment of cardiovascular diseases
Bertrand Piccard, Swiss explorer and founder of the Solar Impulse Foundation
EIT Summit 2024. What are the trigger points that drive or inhibit innovation?
MMC pioneers wireless monitoring for premature infants with the innovative Bambi Belt, revolutionizing care with improved comfort and mobility.
Wireless Monitoring of Vital Signs in Premature Infants at Máxima MC
Follow us