Search
Close this search box.
Search

Engineers take pictures of brain with surgical needle and laser light

Less is more, that is the message the University of Utah wishes to convey: a team of engineers from the uiversity have taken a big step in the direction of a less expensive, less invasive method of taking high-resolution pictures of a brain. For now only the brain of a mous, but the process could lead to a much less invasive method for humans.

A team led by University of Utah electrical and computer engineering associate professor Rajesh Menon has developed a process called called ‘computational cannula microscopy’.  It involves taking a needle about a quarter-millimeter in diameter and inserting it into the brain. Laser light shines through the needle and into the brain, illuminating certain cells like a flashlight.

The process has been developed for the benefit of medical researchers studying neurological disorders such as depression, obsessive-compulsive disorder and aggression. Menon and his team have been working with the U. of U.’s Nobel-winning researcher, Distinguished Professor of Biology and Human Genetics Mario Capecchi, and Jason Shepherd, assistant professor of neurobiology and anatomy.

The researchers genetically modify the mice so that only the cells they want to see glow under this laser light. The light from the glowing cells is captured by the needle and recorded by a standard camera. The captured light is run through a sophisticated algorithm developed by Menon and his team, which assembles the scattered light waves into a 2D or potentially, even a 3D picture.

Current methods

Typically, researchers must surgically take a sample of the animal’s brain to examine the cells under a microscope, or they use an endoscope that can be anywhere from 10 to 100 times thicker than a needle. “That’s very damaging,” Menon says of previous methods of examining the brain. “What we have done is to take a surgical needle that’s really tiny and easily put it into the brain as deep as we want and see very clear high-resolution images. This technique is particularly useful for looking deep inside the brain where other techniques fail.”

Now that the process has been proven to work in animals, Menon believes it can potentially be developed for human patients, creating a simpler, less expensive and invasive method than endoscopes.  “Although its much more complex from a regulatory standpoint, it can be done in humans, and not just in the brain, but for other organs as well, he says. “But our motivation for this project right now is to look inside the brain of the mouse and further develop the technique to understand fundamental neuroscience in the mouse brain.”

The research group has documented its process in a paper titled, “Deep-brain imaging via epifluorescence Computational Cannula Microscopy,” in the latest issue of Scientific Reports. The paper’s lead author is doctoral student Ganghun Kim. The paper’s co-authors include doctoral student Kyle Jenks and postdoctoral researchers Naveen Nagarajan and Elissa Pastuzyn.

Whixx

ICT&health World Conference 2024

Experience the future of healthcare at the ICT&health World Conference from May 14th to 16th, 2024!
Secure your ticket now and immerse yourself in groundbreaking technologies and innovative solutions.
Engage with fellow experts and explore the power of global collaborations.

Share this article!

Read also
Navigating Digital Maturity in Healthcare IT
Digital maturity vs. Reality. How to rethink the IT staff role in a hospital
Online health care icon application on smart phone
End-users of mobile health apps expect far more than a good design
Mayo Clinic started with its innovations for its ten million patients and demonstrated that its model worked, and that data could be ethically and responsibly used to drive innovations.
John Halamka: 'Create the Fear of Missing Out'
Balancing regulatory compliance with seamless adoption, healthcare navigates the integration of AI solutions.
A guide to implementing AI in healthcare amid the EU AI Act
AmyWebb-Stephen-Olker
Futurist Amy Webb claims that wearables will evolve into "connectables"
Digital health solutions empower patients to better manage their health and integrate care into their daily lives.
How to improve Digital Patient Engagement to streamline workflows
For people with diabetes, inaccurate blood glucose measurements can lead to errors in diabetes management, including taking the wrong dose of insulin, sulfonylureas, or other medications that can rapidly lower blood glucose.
Smartwatches measuring glucose level: Harmful but easy to buy fake innovations
How to introduce innovation and AI in healthcare organizations if there is no business model for prevention and quality – Our interview with Professor Ran Balicer, the Chief Innovation Officer at Clalit Health Services and founding Director of Clalit Research Institute.
I see no legitimate rationale for delaying the digital transformation in healthcare
Pioneering Cardiac Arrest Detection for Enhanced Survival.
CardioWatch Revolutionizes Cardiac Arrest Detection
Dr. Oscar Díaz-Cambronero, Head of Perioperative Medicine Department at La Fe Hospital, spearheads innovative telemonitoring initiatives revolutionizing patient care
Smartwatches Saving Lives Inside and Outside the Hospital
Follow us