Search
Close this search box.
Search

German students reach breakthrough in bio-printing

Students of the Technical University and Ludwig-Maxmillian University, both based in Munich, have used a 3D-printer and bio-ink to propel bio-printing forward. Their new technology makes the printing of human organs cheaper and easier.

In 2015, 759 organ transplantations were performed in the Netherlands. The procedure comes with a price: from the salary of the operating physicians, to transporting the organs. Another problem is rejection of the organ; even after replacing one of the organs, the question remains whether the body of the recipient is going to accept it. Furthermore, in mainstream organ transplants, it is necessary for someone to die first. These points show that there are a lot of possibilities for improvement in organ donation.

3D-bioprinting

3D-bioprinting creates a lot of new possibilities in this world. 3D-printing the organs will cut costs and reduce the mortality rate. Researchers have already succeeded in creating tissue from human cells with 3D-printers. This shows that there is a real possibility to 3D-print organs in the future.

Human cells however come with one problem: they don’t have printer-friendly material qualities. To solve this problem, researchers have to use bio-ink. Bio-ink is a substance, which can be mixed with human cells. This makes them printable. Now having solved one problem, another one emerges: when using bio-ink, temporary scaffolds are needed to support the organic structures.

BiotINK

Students from Munich figured out a solution for this problem: a hacked Ultimaker 2+ printer and a specially developed bio-ink. BiotINK consists of a mix of biotin and streptavidin, which makes the ink act like superglue. The biotin connects itself with the receptors, and makes sure the cells stay in their place during printing. This makes the printing process a lot more precise, which is of vital importance when printing organs. This also makes aforementioned scaffolds unnecessary.

The new ink speeds up the process as well, by making three-dimensional intercellular contact possible. This makes it possible to create complex tissue and multiple cell types.

###BiotInk###

Future of 3D-bioprinting

The new technology offers large potential for physicians and researchers. It makes it possible to print parts independently, with the exception of certain metal components and wires. It reduces the cost of 3D-bioprinting, which makes sure more people could afford it. The changes made in the 3D-printer are easy to do, even without extensive knowledge of 3D-printers. This cost-reducing technology makes sure more laboratories can experiment with 3D-bioprinting. This speeds up Research and Development, which makes the printing of organs much more viable.

Whixx

ICT&health World Conference 2024

Experience the future of healthcare at the ICT&health World Conference from May 14th to 16th, 2024!
Secure your ticket now and immerse yourself in groundbreaking technologies and innovative solutions.
Engage with fellow experts and explore the power of global collaborations.

Share this article!

Read also
Doximity_edited
Innovation Adoption: How to Traverse The Valleys of Death
Pioneering Cardiac Arrest Detection for Enhanced Survival.
CardioWatch Revolutionizes Cardiac Arrest Detection
Dr. Oscar Díaz-Cambronero, Head of Perioperative Medicine Department at La Fe Hospital, spearheads innovative telemonitoring initiatives revolutionizing patient care
Smartwatches Saving Lives Inside and Outside the Hospital
EIT 2024
EIT Awards 2024. Two European startups are revolutionizing the treatment of cardiovascular diseases
Bertrand Piccard, Swiss explorer and founder of the Solar Impulse Foundation
EIT Summit 2024. What are the trigger points that drive or inhibit innovation?
MMC pioneers wireless monitoring for premature infants with the innovative Bambi Belt, revolutionizing care with improved comfort and mobility.
Wireless Monitoring of Vital Signs in Premature Infants at Máxima MC
Data protection-critical incidents resulting from human error are often rooted in stress, routine, negative attitudes toward IT, and deficits in employees' identification with the healthcare facility.
How cyberpsychology helps prevent human errors leading to data leaks
What technologies will enter our homes in a few months? ICT&health checked it out at the CES 2024.
CES 2024: Meet the exciting innovations for health and well-being
An article on a new study on e-health assessment tools
eHealth success lies at the intersection of technology, people, and organization
Unlocking the Future: Professor Sylvia Thun, a trailblazer in healthcare interoperability, discusses the crucial role of seamless data exchange in revolutionizing medicine and empowering individuals with comprehensive access to their health data.
Seamless data exchange will unlock the long-awaited benefits of digitalization
Follow us