Close this search box.

The good, the bad and the CRISPR-Cas9: the advantages and ethical questions

"Good morning, doctor, I am here for my gene editing appointment.” In the future, could this be a greeting heard in physician offices around the world? With the introduction of CRISPR technology, genetic material can now be more easily and precisely edited, even creating changes that can subsequently be inherited by offspring.

CRISPR – clustered regularly interspaced short palindromic repeats – is often used as shorthand for the CRISPR-associated protein 9 (Cas9) technology. In the lab it can remove and replace specific sequences of DNA. Scientists now expect that it will be harnessed to treat and or possibly cure debilitating diseases such as sickle cell anemia, Duchenne muscular dystrophy, Huntington’s disease, HIV, and cancers. Preclinical studies are underway to assess the safety of CRISPR-Cas9 and its ability to discriminate healthy from non-healthy cells.

Jennifer Doudna, PhD, a geneticist and a co-creator along with Emmanuelle Carpenter, PhD, of the CRISPR-Cas9 technology, recently delivered the Wallace H. Coulter Lectureship Award plenary with her talk, “CRISPR Biology, Technology & Ethics: The Future of Genome Engineering.” A key leader in the field, Doudna detailed her laboratory’s innovative findings that she has collectively referred to as a “molecular scalpel for genomes.”

She intrigued the audience by reviewing the intricate bacterial CRISPR adaptive immune system and how her lab harnessed its power to edit genes. She also delved into CRISPR’s potential applications, current limitations, and ethical concerns.

Refining efficiency CRISPR–Cas9

Doudna explained how her current research is refining CRISPR–Cas9 to improve its efficiency and prevent off-target mutations. Her laboratory has developed a CRISPR–Cas9 targeted gene knockdown method with enhanced efficiency. This method employs techniques such as single-particle electron microscopy to delineate the molecular mechanisms underlying the highly diverse CRISPR-Cas networks.

Several researchers already are using CRSPR to edit genes. Gene editing research in animal models involving mice and monkeys, in human embryos, and in HIV-infected human cells show promise. For example, in 2016 Lu You, MD, and colleagues at Sichuan University in Chengdu became the first group in the world to inject CRISPR–Cas9 modified T cells into patients with non-small cell lung cancer. The technology also is being used to speed pharmaceutical research and identify targeted therapies for somatic and heritable diseases.

Social and ethical frameworks

What social and ethical frameworks should we use to consider research using CRISPR-Cas9? This was discussed in another recent symposium, “Ethics in Laboratory Medicine,” where Seema Mohapatra, JD, MPH presented “Legal and Ethical Issues with Mitochondrial Replacement and CRISPR-Cas9.”

She discussed the applications of technologies such as developing so-called designer babies, and the controversy surrounding what impact CRISPR gene editing will have on modern eugenics. Mohapatra has written in law journals about the need to examine such technology through the lens of “reproductive justice” and “disability justice” to ensure that all voices are heard and all populations can benefit from such powerful scientific discoveries.


ICT&health World Conference 2024

Experience the future of healthcare at the ICT&health World Conference from May 14th to 16th, 2024!
Secure your ticket now and immerse yourself in groundbreaking technologies and innovative solutions.
Engage with fellow experts and explore the power of global collaborations.

Share this article!

Read also
Navigating Digital Maturity in Healthcare IT
Digital maturity vs. Reality. How to rethink the IT staff role in a hospital
Online health care icon application on smart phone
End-users of mobile health apps expect far more than a good design
Mayo Clinic started with its innovations for its ten million patients and demonstrated that its model worked, and that data could be ethically and responsibly used to drive innovations.
John Halamka: 'Create the Fear of Missing Out'
Balancing regulatory compliance with seamless adoption, healthcare navigates the integration of AI solutions.
A guide to implementing AI in healthcare amid the EU AI Act
Futurist Amy Webb claims that wearables will evolve into "connectables"
Digital health solutions empower patients to better manage their health and integrate care into their daily lives.
How to improve Digital Patient Engagement to streamline workflows
For people with diabetes, inaccurate blood glucose measurements can lead to errors in diabetes management, including taking the wrong dose of insulin, sulfonylureas, or other medications that can rapidly lower blood glucose.
Smartwatches measuring glucose level: Harmful but easy to buy fake innovations
How to introduce innovation and AI in healthcare organizations if there is no business model for prevention and quality – Our interview with Professor Ran Balicer, the Chief Innovation Officer at Clalit Health Services and founding Director of Clalit Research Institute.
I see no legitimate rationale for delaying the digital transformation in healthcare
Pioneering Cardiac Arrest Detection for Enhanced Survival.
CardioWatch Revolutionizes Cardiac Arrest Detection
Dr. Oscar Díaz-Cambronero, Head of Perioperative Medicine Department at La Fe Hospital, spearheads innovative telemonitoring initiatives revolutionizing patient care
Smartwatches Saving Lives Inside and Outside the Hospital
Follow us